ESCOLA ESTADUAL ANTÔNIO PIMENTA - DISCIPLINA: MATEMÁTICA - PROFESSOR: AMÓS CARVALHO
1ª Lista de Exercícios de Probabilidade
- Em uma questão típica de múltipla escolha com cinco respostas possíveis, respondendo à questão aleatoriamente, qual é a probabilidade de sua resposta estar errada?
- A Cia de Seguros Sul América estudou as causas de morte por acidente doméstico e compilou um arquivo que consistia em 160 mortes causadas por quedas, 120 mortes causadas por envenenamento e 70 causadas por fogo e queimaduras. Selecionando aleatoriamente um desses casos, qual é a probabilidade de que a morte tenha sido causada por envenenamento?
- Determine a probabilidade de que um casal com três filhos tenha exatamente 2 meninos.
- Ao escolher entre diversos fornecedores de computadores, um comprador deseja saber a probabilidade de um computador pessoal falhar durante os dois primeiros anos. Qual é essa probabilidade? Obs.: Ao observarmos um grande número de computadores pessoais, uma pesquisa feita pela PC World feita junto a 4000 possuidores de computadores pessoais revelou que 992 dos computadores falharam durante os dois primeiros anos.
- Quais dos valores abaixo não podem ser probabilidades?
0; 0,0001; -0,2; 3/2; 2/3; ;
- Qual a probabilidade do resultado ser cara ao jogar uma moeda?
- Selecionada uma pessoa aleatoriamente, determine a probabilidade de ele ou ela fazer aniversário em 18 de outubro (ignore os anos bissextos) e determine a probabilidade de o aniversário de uma pessoa escolhida aleatoriamente cair em novembro.
- Em um teste com três questões do tipo V/F, um estudante mal preparado deve responder cada uma aleatoriamente (por palpite).
a) Relacione os diferentes resultados possíveis:
b) Qual é a probabilidade de responder corretamente todas as três questões?
c) Qual é a probabilidade de “palpitar” incorretamente todas as três questões?
d) Qual é a probabilidade de passar no teste “palpitando” corretamente ao menos duas questões?
- A Mastercard International efetuou um estudo de fraudes em cartões de crédito; os resultados estão consubstanciados na tabela a seguir:
- TIPO DE FRAUDE
- NÚMERO
- Cartão roubado
- 243
- Cartão falsificado
- 85
- Pedido correio/telefone
- 52
- Outros
- 46
|
|
|
|
|
|
|
|
|
|
Selecionado aleatoriamente um caso de fraude nos casos resumidos na tabela, qual a probabilidade de a fraude resultar de um cartão falsificado?
- A Nike Corporation deseja testar um novo material a ser usado na fabricação de tênis. Um grupo de teste consiste em 20 homens e 30 mulheres. Escolhida aleatoriamente uma pessoa desse grupo de teste, determine a probabilidade de não ser homem.
-
TESTE DE SELDANE
|
Seldane
|
Placebo
|
Grupo
de Controle
|
TOTAL
|
Dor de cabeça
|
49
|
49
|
24
|
122
|
Ñ dor de cabeça
|
732
|
616
|
602
|
1950
|
TOTAL
|
781
|
665
|
626
|
2072
|
Fonte: Merrel Dow Pharmaceutical, Inc.
a) Se um dos 2072 indivíduos é escolhido aleatoriamente determine a probabilidade de se obter alguém que fez uso do placebo ou estava no grupo de controle.
b) Qual a probabilidade de obter alguém que tenha usado Seldane ou que não teve dor de cabeça?
- Ao jogar 21 (um jogo no cassino em Las Vegas), o apostador tira a 1ª carta de um baralho bem embaralhado. Qual é a probabilidade de se obter:
a) uma carta de paus ou um ás?
b) um ás ou um 2?
c) um ás e um 2?
- No exercício do Seldane, calcule a probabilidade de obter alguém que tomou Seldane ou usou um Placebo.
- A Detroit Auto Supply Company produz um lote de 50 filtros de combustível, dos quais 6 são defeituosos. Escolhem-se aleatoriamente e testam-se 2 filtros do lote. Determine a probabilidade de ambos serem bons, se os filtros são selecionados:
a) com reposição:
b) sem reposição:
- Um gerente de controle de qualidade utiliza equipamento de teste para detectar modems de computador defeituosos. Retiram-se aleatoriamente 3 modems diferentes de um grupo onde há 12 defeituosos e 18 sem defeito. Qual a probabilidade:
a) de todos os 3 serem defeituosos?
b) de ao menos um dos modems escolhidos ser defeituosos?
- Consideremos um lote de 10.000 peças onde 10% sejam defeituosas. Duas peças são extraídas. Qual a probabilidade de que ambas sejam perfeitas?
a) se houver reposição da 1ª antes que a 2ª seja escolhida?
b) se não houver reposição da 1ª peça?
- O seguinte grupo de pessoas está numa sala: 5 rapazes com mais de 21 anos, 4 rapazes com menos de 21 anos, 6 moças com mais de 21 anos, 3 moças com menos de 21 anos. Uma pessoa é escolhida ao acaso dentre as 18. Qual a probabilidade dos seguintes eventos?
a) A: a pessoa tem mais de 21 anos;
b) B: a pessoa tem menos de 21 anos;
c) C: a pessoa é um rapaz;
d) D: a pessoa é uma moça.