Criar uma Loja Virtual Grátis
LISTA DE EXERCÍCIOS - FUNÇÕES DO 1º GRAU
LISTA DE EXERCÍCIOS - FUNÇÕES DO 1º GRAU

LISTA DE EXERCÍCIOS - FUNÇÕES DO 1º GRAU

01) A função linear R(t) = at + b expressa o rendimento R, em milhares de reais, de certa aplicação. O tempo t é contado em meses, R(1) = –1 e R(2) = 1. Nessas condições, determine o rendimento obtido nessa aplicação, em quatro meses.

02) Uma função f é dada por f(x) = ax + b, em que a e b são números reais. Se f(–1) = 3 e f(1) = –1, determine o valor de f(3).

03) Determine a função afim f(x) = ax + b, sabendo que f(1) = 5 e f(–3) = –7.

04) Dada à função do 1º grau F(x) = (1 - 5x). Determinar: a. F(0) b. F(-1) c. F(1/5) d. F(-1/5)

05) Considere a Função do 1º Grau F(x) = -3x + 2. Determine os valores de x para que se tenha: a. F(x) = 0 b. F(x) = 11 c. F(x) = -1/2

06) Dada a função F(x) = (ax + 2), determine o valor de a para que se tenha F(4) = 22

07) Dada a função F(x) = ax + b e sabendo-se que F(3) = 5 e F(-2) = -5 calcule F(1/2)

08) Um vendedor recebe mensalmente um salário composto de duas partes: uma parte fixa, no valor de R$ 1.000,00 e uma parte variável que corresponde a uma comissão de 18% do total de vendas que ele fez durante o mês. a. Expressar a função que representa seu salário mensal. b. Calcular o salário do vendedor durante um mês, sabendo-se que vendeu R$ 10.000,00 em produtos.

09) Representar graficamente as retas dadas por: a. y = 2x – 4, b. y = 6, c. y = 10 – 2x, d. y = 6 + 2x

10) Calcular o ponto de intersecção das retas e representá-las num mesmo sistema de coordenadas: a. y = 2x + 5 e y = 3x b. y = 5 e y = 4x, x > 0 c. f(x) = 1 + x e f(x) = 4 d. f(x) = 3 e f(x) = 2x + 1 e. f(x) = 1/2x e f(x) = 2x – 3

11) Em algumas cidades você pode alugar um carro $ 154 por dia mais um adicional de R$ 16,00 por km rodado. Determine a função por um dia e esboce no gráfico. Calcule o preço para se alugar por um dia e dirigi-lo por 200 km.

12) Uma companhia de gás irá pagar para um proprietário de terra $ 15.000,00 pelo direito de perfurar a terra para encontrar gás natural, e $ 0,3 para cada mil pés cúbicos de gás extraído. Expresse o total que o proprietário irá receber com função da quantidade de gás extraído. Esboçar o gráfico.

13) O preço a ser pago por uma corrida de táxi inclui uma parcela fixa, denominada bandeirada, e uma parcela que depende da distância percorrida. Se a bandeirada custa R$ 5,50 e cada quilômetro rodado custa R$ 0,90, calcule: a. o preço de uma corrida de 10 km. b. a distância percorrida por um passageiro que pagou R$ 19,00 pela corrida.

14) Na revelação de um filme, uma óptica calcula o preço a ser cobrado usando a fórmula P =12,00 + 0,65n, onde P é o preço,em reais, a ser cobrado e n o número de fotos reveladas do filme. a. Quanto pagarei se forem reveladas 22 fotos do meu filme? b. Se paguei a quantia de R$ 33,45 pela revelação, qual o total de fotos reveladas?

15) Seu Renato assustou-se com sua última conta de celular. Ela veio com o valor 250,00 (em reais). Ele, como uma pessoa que não gosta de gastar dinheiro à toa, só liga nos horários de descontos e para telefones fixos (PARA CELULAR JAMAIS!). Sendo assim a função que descreve o valor da conta telefônica é P = 31,00 + 0,25t, onde P é o valor da conta telefônica, t é o número de pulsos, (31,00 é o valor da assinatura básica, 0,25 é o valor de cada pulso por minuto). Quantos pulsos seu Renato usou para que sua conta chegasse com este valor absurdo (250,00)?

16) Através de um estudo sobre o consumo de energia elétrica de uma fábrica, chegou-se à equação C = 400t, em que C é o consumo em KWh e t é o tempo em dias. Quantos dias são necessários para que o consumo atinja 4800 KWh?

17) Dadas as funções f(x) = 3x - 1 e g(x) = x² + 2, calcular: A) (g o f)(x) B) (f o g)(x) C) (f o f)(x) D) (g o g)(x) 18)